Published June 19, 2016
| Version v1
Conference paper
An efficient gradient-based method for differential-interference-contrast microscopy
Contributors
Others:
- Università degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia (UNIMORE)
- Universidad Industrial de Santander [Bucaramanga] (UIS)
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Differential-interference-contrast (DIC) microscopy is an optical microscopy technique widely used in biology to observe unstained transparent specimens, in which a two-dimensional image is formed from the interference of two waves that have a lateral differential displacement (shear) and are phase shifted relative one to each other. Following the rotational-diversity model proposed in [1], one is interested in retrieving the specimen's phase function from a set of DIC intensity images acquired at different rotations of the specimen. This highly nonlinear, ill-posed problem is solved by adopting a least squares approach and thus looking for a regularized solution of a smooth nonconvex optimization problem. As already done in [1], one can address the DIC problem by means of a nonlinear conjugate gradient method, which is particularly suited for least squares problems. However, the computation of the line search parameter at each iteration may require several evaluations of both the function and its gradient in order to ensure convergence [2], which significantly increases computational time when such evaluations are time-consuming, as is the case of the DIC problem. In this light we propose an efficient gradient-descent method for the estimation of a specimen's phase function from polychromatic DIC images. The method minimizes the sum of a nonlinear least-squares discrepancy measure and a smooth approximation of the total variation and exploits a recent updating rule for the choice of the step size [3]. Numerical simulations on two computer-generated objects show significant improvements in terms of efficiency and stability with respect to widely used conjugate gradient methods.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01426337
- URN
- urn:oai:HAL:hal-01426337v1
Origin repository
- Origin repository
- UNICA