Published 2002
| Version v1
Report
Navier-Stokes dynamical shape control : from state derivative to Min-Max principle
- Others:
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Central des Ponts et Chaussées (LCPC)
- INRIA
Description
This report deals with recent progress in the study of shape optimization problems in case of a moving domain. We may restrict ourself to the case of newtonian viscous incompressible fluids described by the Navier-Stokes equations. We suggest three strategies in order to solve an optimal control problem involving the shape variable, respectively based on, the state derivative with respect to the shape and its associated adjoint state, the Min-Max principal coupled with a function space parametrization, the Min-Max principal coupled with a function space embedding.
Additional details
- URL
- https://hal.inria.fr/inria-00071975
- URN
- urn:oai:HAL:inria-00071975v1
- Origin repository
- UNICA