Published January 11, 2015 | Version v1
Journal article

Data gathering and personalized broadcasting in radio grids with interference

Others:
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Institute of Applied Mathematics, Chinese Academy of Sciences
Réseaux capillaires urbains (URBANET) ; Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI) ; Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
University College of the Fraser Valley (UCFV) ; University College of the Fraser Valley (UFV)
Region PACA
ANR-09-VERS-0001,ECOSCELLS(2009)
ANR-09-BLAN-0373,GraTel(2009)
European Project: 258307,EC:FP7:ICT,FP7-ICT-2009-5,EULER(2010)

Description

In the gathering problem, a particular node in a graph, the base station , aims at receiving messages from some nodes in the graph. At each step, a node can send one message to one of its neighbors (such an action is called a call ). However, a node cannot send and receive a message during the same step. Moreover, the communication is subject to interference constraints, more precisely, two calls interfere in a step, if one sender is at distance at most dI from the other receiver. Given a graph with a base station and a set of nodes having some messages, the goal of the gathering problem is to compute a schedule of calls for the base station to receive all messages as fast as possible, i.e., minimizing the number of steps (called makespan). The gathering problem is equivalent to the personalized broadcasting problem where the base station has to send messages to some nodes in the graph, with same transmission constraints.In this paper, we focus on the gathering and personalized broadcasting problem in grids. Moreover, we consider the non-buffering model: when a node receives a message at some step, it must transmit it during the next step. In this setting, though the problem of determining the complexity of computing the optimal makespan in a grid is still open, we present linear (in the number of messages) algorithms that compute schedules for gathering with dI∈{0,1,2}. In particular, we present an algorithm that achieves the optimal makespan up to an additive constant 2 when dI=0. If no messages are "close" to the axes (the base station being the origin), our algorithms achieve the optimal makespan up to an additive constant 1 when dI=0, 4 when dI=2, and 3 when both dI=1 and the base station is in a corner. Note that, the approximation algorithms that we present also provide approximation up to a ratio 2 for the gathering with buffering. All our results are proved in terms of personalized broadcasting.

Abstract

International audience

Additional details

Created:
March 25, 2023
Modified:
November 29, 2023