Restless dependent bandits with fading memory
- Others:
- Institut für Mathematik [Potsdam] ; University of Potsdam = Universität Potsdam
- Université Paris-Saclay
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] (OVGU)
Description
We study the stochastic multi-armed bandit problem in the case when the arm samples are dependent over time and generated from so-called weak $\cC$-mixing processes. We establish a $\cC-$Mix Improved UCB agorithm and provide both problem-dependent and independent regret analysis in two different scenarios. In the first, so-called fast-mixing scenario, we show that pseudo-regret enjoys the same upper bound (up to a factor) as for i.i.d. observations; whereas in the second, slow mixing scenario, we discover a surprising effect, that the regret upper bound is similar to the independent case, with an incremental {\em additive} term which does not depend on the number of arms. The analysis of slow mixing scenario is supported with a minmax lower bound, which (up to a $\log(T)$ factor) matches the obtained upper bound.
Abstract
30 pages
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03082512
- URN
- urn:oai:HAL:hal-03082512v1
- Origin repository
- UNICA