Published July 18, 2021
| Version v1
Conference paper
Optimizing persistent homology based functions
Contributors
Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Fujitsu Laboratories Ltd.
- Centre de vision numérique (CVN) ; Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay
- Collaboration Fujitsu - Inria DataShape
- ANR-19-CHIA-0001,TopAI,TopAI : Analyse Topologique des Données pour l'apprentissage et l'IA(2019)
Description
Solving optimization tasks based on functions and losses with a topological flavor is a very active,growing field of research in data science and Topological Data Analysis, with applications in non-convexoptimization, statistics and machine learning. However, the approaches proposed in the literatureare usually anchored to a specific application and/or topological construction, and do not come withtheoretical guarantees. To address this issue, we study the differentiability of a general map associatedwith the most common topological construction, that is, the persistence map. Building on real analyticgeometry arguments, we propose a general framework that allows us to define and compute gradientsfor persistence-based functions in a very simple way. We also provide a simple, explicit and sufficientcondition for convergence of stochastic subgradient methods for such functions. This result encompassesall the constructions and applications of topological optimization in the literature. Finally, we provideassociated code, that is easy to handle and to mix with other non-topological methods and constraints, aswell as some experiments showcasing the versatility of our approach.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-02969305
- URN
- urn:oai:HAL:hal-02969305v2
Origin repository
- Origin repository
- UNICA