Published June 2015
| Version v1
Journal article
A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow
Creators
Contributors
Others:
- Institute of Geophysics [ETH Zürich] ; Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW) ; Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
- Advanced Photon Source, Argonne National Laboratory ; Argonne National Laboratory [Lemont] (ANL)
- Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) ; Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
- Department of Computer Science [Boulder] ; University of Colorado [Boulder]
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Institut des Sciences de la Terre de Paris (iSTeP) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Description
In this paper we describe a computational methodology that is specifically designed for studying three-dimensional geodynamic processes governed by heterogeneous visco-plastic Stokes flow. The method employs a hybrid spatial discretization consisting of a View the MathML sourceQ2-P1disc mixed finite element formulation for the Stokes problem, coupled to a material-point formulation which is used for representing material state and history-dependent variables. The applicability and practicality of this methodology is realized through the development of an efficient, scalable and robust variable viscosity Stokes preconditioner. In this work, these objectives are achieved through exploiting matrix-free operators and a geometric multigrid preconditioner employing hybrid coarse level operators, Chebyshev smoothers and hybrid Krylov coarse level solvers. The robustness and parallel efficiency of this strategy is demonstrated using an idealized geodynamic model. Lastly, we apply the new methodology to study geodynamic models of continental rifting and break-up in order to understand the diverse range of passive continental margins we observe on Earth today.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01365819
- URN
- urn:oai:HAL:hal-01365819v1
Origin repository
- Origin repository
- UNICA