Martian Infrasound: Numerical Modeling and Analysis of InSight's Data
- Others:
- Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) ; Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Institut Universitaire de France (IUF) ; Ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
- Institut Pierre-Simon-Laplace (IPSL (FR_636)) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Institut de Physique du Globe de Paris (IPGP) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Cornell Center for Astrophysics and Planetary Science (CCAPS) ; Cornell University [New York]
- Jet Propulsion Laboratory (JPL) ; NASA-California Institute of Technology (CALTECH)
- Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Description
Acoustic waves in planetary atmospheres couple into the solid surface, producing ground displacements that can be measured using seismometers. On November 26 2018, the InSight mission successfully landed on Mars. Its objectives include studying Mars' interior using the seismometer SEIS (Seismic Experiment for Interior Structures) and the atmosphere through the weather station APSS (Auxiliary Payload Sensor Suite). Because InSight is the first mission capable of studying infrasound on Mars, we investigate the signature of infrasound both in terms of air pressure and ground velocities. Using numerical simulations, we characterize (1) the acoustic propagation pattern in Martian dusk, and (2) the mechanical atmosphere-to-ground coupling under acoustic waves. Then, using SEIS data, we demonstrate that two low-frequency monotone events (S0133a and S0189a) are in fact infrasound trapped in the atmospheric nocturnal surface waveguide. We base our demonstration on the following facts. (1) Seismic signals rarely produce, at a given station, a single frequency varying from one event to the other. (2) No clear seismic phases have been identified for such events. (3) The observed SEIS signals present the characteristics expected for trapped infrasound observed through their compliance effects (specific frequency response, more energy on the vertical component, ±90 • phase shift between vertical and horizontal components, no detection on pressure sensor at these low amplitude levels). Our simulations of the nocturnal waveguide's response is however subject to uncertainties because 1) it relies on the sol-to-sol variability of the atmosphere, and 2) sub-surface properties are not properly known at this time.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02971385
- URN
- urn:oai:HAL:hal-02971385v1
- Origin repository
- UNICA