A Complete Axiomatisation for Quantifier-Free Separation Logic
- Others:
- Laboratoire Spécification et Vérification (LSV) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03005864
- URN
- urn:oai:HAL:hal-03005864v1
- Origin repository
- UNICA