Published March 1, 2020 | Version v1
Journal article

A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models

Others:
Institut des Neurosciences Paris-Saclay (NeuroPSI) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) ; Universitat de Barcelona (UB)
University of Strathclyde [Glasgow]
[GIN] Grenoble Institut des Neurosciences (GIN) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA)
Laboratoire Traitement du Signal et de l'Image (LTSI) ; Université de Rennes 1 (UR1) ; Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Mathématiques pour les Neurosciences (MATHNEURO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Università degli Studi di Roma "La Sapienza" = Sapienza University [Rome] (UNIROMA)
Biologically plausible Integrative mOdels of the Visual system : towards synergIstic Solutions for visually-Impaired people and artificial visiON (BIOVISION) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] (INFN) ; Istituto Nazionale di Fisica Nucleare
H2020-720270 & H2020-785907, Human Brain project
616268, European Reseach Council
European Project: 720270,H2020 Pilier Excellent Science,H2020-Adhoc-2014-20,HBP SGA1(2016)
European Project: 616268,EC:FP7:ERC,ERC-2013-CoG,F-TRACT(2014)

Description

We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin-Huxley and Morris-Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the populations response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023