Published February 18, 2016 | Version v1
Publication

Reaction-rate theory with account of the crystal anharmonicity

Description

Reaction rate theory in solids is modified taking into account intrinsic localized modes or discrete breathers (DBs) that can appear in crystals with sufficient anharmonicity resulting in violation of Arrhenius law. Large amplitude oscillations of atoms about their equilibrium positions in the lattice cause local potentials of alternating sign, which are described in terms of time-periodic modulations of the potential barriers for chemical reactions taking place in the vicinity of DBs. The reaction rate averaged over large macroscopic volumes and times including a lot of DBs is increased by a factor that depends on the DB statistics. The breather statistics in thermal equilibrium and in thermal spikes in solids under irradiation with swift particles is considered, and the corresponding reaction rate amplification factors are derived.

Additional details

Created:
March 27, 2023
Modified:
November 30, 2023