Published October 12, 2018 | Version v1
Conference paper

Pallas's formation and internal structure: New insights from VLT/SPHERE

Others:
Queen's University Belfast
Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Astéroïdes, comètes, météores et éphémérides (ACME) ; Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Astronomie et systèmes dynamiques (ASD) ; Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)

Description

Large (D>100km) asteroids are the most direct remnants of the building blocks of planets. (2) Pallas is the third largest asteroid and the parent body of a small collisional family. Its spectral properties indicate a B-type surface, meaning Pallas is most likely linked to carbonaceous chondrite meteorites. Disc-resolved images have revealed a nearly hydrostatic shape overprinted by long-wavelength concavities (Schmidt et al. 2009, Carry et al. 2010). This was interpreted as evidence for an early phase of internal heating subsequent to Pallas's formation, followed by several large impact craters (Schmidt & Castillo-Rogez 2012). Recent estimates of Pallas's density, 2.40±0.25 g/cm3 (Schmidt et al. 2009), 3.40±0.90 g/cm3 (Carry et al. 2010) and 2.72±0.17 g/cm3 (Hanus et al. 2017), are rather inconsistent and prevent from differentiating among the various models proposed for its internal structure (Schmidt & Castillo-Rogez 2012). This currently limits our understanding of the formation and thermal evolution of Pallas. We report new high-angular resolution observations of Pallas collected in the frame of the SPHERE large survey of the asteroid belt (see Talk by P. Vernazza) with the adaptive-optics-fed SPHERE ZIMPOL camera on the VLT. 40 images acquired at 8 epochs provide a full longitudinal coverage of Pallas's southern hemisphere, with Pallas being resolved with ˜120 pixels along its longest axis. The optimal angular resolution of each image was restored with Mistral (Fusco et al. 2002), a myopic deconvolution algorithm optimised for images with sharp boundaries, which allows the identification of many craters and geological features on Pallas. A precise 3D-shape reconstruction was achieved with the ADAM software (Viikinkoski et al. 2015), providing a high precision estimate of Pallas's 3D shape, volume and hence density. Those are used to explore Pallas's early thermal evolution, its subsequent collisional evolution, and its current internal structure and composition. [1] Carry et al. 2010, Icarus, 205, 460 [2] Fusco et al. 2002, SPIE, 4839, 1065 [3] Hanus et al. 2017, A&A, 601, A114 [4] Schmidt et al. 2009, Science, 326, 275 [5] Schmidt & Castillo-Rogez, Icarus, 218, 478 [6] Viikinkoski et al. 2015, A&A, 576, A8

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023