Published April 26, 2017 | Version v1
Publication

Non-iterative low-multilinear-rank tensor approximation with application to decomposition in rank-(1,L,L) terms

Others:
GIPSA - Communication Information and Complex Systems (GIPSA-CICS) ; Département Images et Signal (GIPSA-DIS) ; Grenoble Images Parole Signal Automatique (GIPSA-lab ) ; Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ) ; Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
European Project: 320594,EC:FP7:ERC,ERC-2012-ADG_20120216,DECODA(2013)

Description

Computing low-rank approximations is one of the most important and well-studied problems involving tensors. In particular, approximations of low multilinear rank (mrank) have long been investigated by virtue of their usefulness for subspace analysis and dimensionality reduction purposes. The first part of this paper introduces a novel algorithm which computes a low-mrank tensor approximation non-iteratively. This algorithm, called sequential low-rank approximation and projection (SeLRAP), generalizes a recently proposed scheme aimed at the rank-one case, SeROAP. We show that SeLRAP is always at least as accurate as existing alternatives in the rank-(1,L,L) approximation of third-order tensors. By means of computer simulations with random tensors, such a superiority was actually observed for a range of different tensor dimensions and mranks. In the second part, we propose an iterative deflationary approach for computing a decomposition of a tensor in low-mrank blocks, termed DBTD. It first extracts an initial estimate of the blocks by employing SeLRAP, and then iteratively refines them by recomputing low-mrank approximations of each block plus the residue. Our numerical results show that, in the rank-(1,L,L) case, this remarkably simple scheme outperforms existing algorithms if the blocks are not too correlated. In particular, it is much less sensitive to discrepancies among the block's norms.

Additional details

Created:
February 28, 2023
Modified:
December 1, 2023