Published September 2024
| Version v1
Journal article
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
Creators
- Fraunhoffer, Nicolas
- Hammel, Pascal
- Conroy, Thierry
- Nicolle, Rémy
- Bachet, Jean-Baptiste
- Harlé, Alexandre
- Rebours, Vinciane
- Turpin, Anthony
- Ben Abdelghani, Meher
- Mitry, Emmanuel
- Biagi, James
- Chanez, Brice
- Bigonnet, Martin
- Lopez, Anthony
- Evesque, Ludovic
- Lecomte, Thierry
- Assenat, Eric
- Bouché, Olivier
- Renouf, Daniel
- Lambert, Aurélien
- Monard, Laure
- Mauduit, Margaux
- Cros, Jérôme
- Iovanna, Juan
- Dusetti, Nelson
Contributors
Others:
- Centre de Recherche en Cancérologie de Marseille (CRCM) ; Aix Marseille Université (AMU)-Institut Paoli-Calmettes (IPC) ; Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Hôpital Paul Brousse
- Institut de Cancérologie de Lorraine - Alexis Vautrin [Nancy] (UNICANCER/ICL) ; UNICANCER
- Centre de recherche sur l'Inflammation (CRI (UMR_S_1149 / ERL_8252 / U1149)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- CHU Pitié-Salpêtrière [AP-HP] ; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 (CANTHER) ; Institut Pasteur de Lille ; Pasteur Network (Réseau International des Instituts Pasteur)-Pasteur Network (Réseau International des Instituts Pasteur)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [CHU Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Cancérologie de Strasbourg Europe (ICANS)
- Queen's University [Kingston, Canada]
- Luminy Science and Technology Park
- Service d'Hématologie [CHRU Nancy] ; Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)
- Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UniCA)
- INSERM UMR1069, University of Tours
- Hôpital Trousseau ; Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)
- Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Hôpital universitaire Robert Debré [Reims] (CHU Reims)
- University of British Columbia (UBC)
- UNICANCER
Description
Background:After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods:We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the 'Pancreas-View' tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results:Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).ConclusionsThis study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04821533
- URN
- urn:oai:HAL:hal-04821533v1
Origin repository
- Origin repository
- UNICA