Published 2019
| Version v1
Journal article
HYDRODYNAMIC LIMIT FOR A DISORDERED HARMONIC CHAIN
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015)
Description
We consider a one-dimensional unpinned chain of harmonic oscillators with random masses.We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium.This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity. Furthermore it follows from our proof that the temperature profile does not evolve in any space-time scale.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01721245
- URN
- urn:oai:HAL:hal-01721245v3
Origin repository
- Origin repository
- UNICA