Published September 4, 2010
| Version v1
Journal article
A three-parameter magnitude phase function for asteroids
Contributors
Others:
- Department of Physics [Helsinki] ; Falculty of Science [Helsinki] ; Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki
- Finnish Geodetic Institute (FGI)
- Institute of Astronomy [Kharkiv] ; V.N. Karazin Kharkiv National University (KhNU)
- INAF - Osservatorio Astrofisico di Torino (OATo) ; Istituto Nazionale di Astrofisica (INAF)
- Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- PLANETO - LATMOS ; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Planetary Science Institute [Tucson] (PSI)
Description
We develop a three-parameter H, G1, G2 magnitude phase function for asteroids starting from the current two-parameter , H, G phase function. We describe stochastic optimization of the basis functions of the magnitude phase function based on a carefully chosen set of asteroid photometric observations covering the principal types of phase dependencies. We then illustrate the magnitude phase function with a chosen set of observations. It is shown that the H, G1, G2 phase function systematically improves fits to the existing data and considerably so, warranting the utilization of three parameters instead of two. With the help of the linear three-parameter phase function, we derive a nonlinear two-parameter H, G12 phase function, and demonstrate its applicability in predicting phase dependencies based on small numbers of observations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00676207
- URN
- urn:oai:HAL:hal-00676207v1
Origin repository
- Origin repository
- UNICA