Multiclass classification machines with the complexity of a single binary classifier
- Creators
- Honeine, Paul
- Noumir, Zineb
- Richard, Cédric
- Others:
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
In this paper, we study the multiclass classification problem. We derive a framework to solve this problem by providing algorithms with the complexity of a single binary classifier. The resulting multiclass machines can be decomposed into two categories. The first category corresponds to vector-output machines, where we develop several algorithms. In the second category, we show that the least-squares classifier can be easily cast into a multiclass one-versus-all scheme, without the need to train multiple binary classifiers. The proposed framework shows that, while keeping the classification accuracy essentially unchanged, the computational complexity is orders of magnitude lower than those previously reported in the literature. This makes our approach extremely powerful and conceptually simple. Moreover, we study the coding of the multiclass labels, and demonstrate that several celebrated approaches are equivalent. These arguments are illustrated with experimentations on well-known benchmarks.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01965575
- URN
- urn:oai:HAL:hal-01965575v1
- Origin repository
- UNICA