Published January 13, 2020
| Version v1
Publication
On the AER Stereo-Vision Processing: A Spike Approach to Epipolar Matching
Description
Image processing in digital computer systems usually considers
visual information as a sequence of frames. These frames are from cameras that
capture reality for a short period of time. They are renewed and transmitted at a
rate of 25-30 fps (typical real-time scenario). Digital video processing has to
process each frame in order to detect a feature on the input. In stereo vision,
existing algorithms use frames from two digital cameras and process them pixel
by pixel until it finds a pattern match in a section of both stereo frames. To
process stereo vision information, an image matching process is essential, but it
needs very high computational cost. Moreover, as more information is
processed, the more time spent by the matching algorithm, the more inefficient
it is. Spike-based processing is a relatively new approach that implements
processing by manipulating spikes one by one at the time they are transmitted,
like a human brain. The mammal nervous system is able to solve much more
complex problems, such as visual recognition by manipulating neuron's spikes.
The spike-based philosophy for visual information processing based on the
neuro-inspired Address-Event- Representation (AER) is achieving nowadays
very high performances. The aim of this work is to study the viability of a
matching mechanism in a stereo-vision system, using AER codification. This
kind of mechanism has not been done before to an AER system. To do that,
epipolar geometry basis applied to AER system are studied, and several tests
are run, using recorded data and a computer. The results and an average error
are shown (error less than 2 pixels per point); and the viability is proved.
Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/91469
- URN
- urn:oai:idus.us.es:11441/91469
Origin repository
- Origin repository
- USE