Published February 8, 2013
| Version v1
Journal article
Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory
- Others:
- Laboratoire de Sciences Actuarielle et Financière (SAF) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Modelling, Observations, Identification for Environmental Sciences (MOISE) ; Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Description
This paper deals with the problem of estimating the level sets of an unknown distribution function $F$. A plug-in approach is followed. That is, given a consistent estimator $F_n$ of $F$, we estimate the level sets of $F$ by the level sets of $F_n$. In our setting no compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In this sense we also present simulated and real examples which illustrate our theoretical results.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00580624
- URN
- urn:oai:HAL:hal-00580624v3
- Origin repository
- UNICA