Published 2023
| Version v1
Journal article
Unbalanced Spanning Subgraphs in Edge Labeled Complete Graphs
Contributors
Others:
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Universität Ulm - Ulm University [Ulm, Allemagne]
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019)
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
Description
Let $K$ be a complete graph of order $n$. For $d\in (0,1)$, let $c$ be a $\pm 1$-edge labeling of $K$ such that there are $d{n\choose 2}$ edges with label $+1$, and let $G$ be a spanning subgraph of $K$ of maximum degree at most $\Delta$ and with $m(G)$ edges. We prove the existence of an isomorphic copy $G'$ of $G$ in $K$ such that the number of edges with label $+1$ in $G'$ is at least $\left(d+\frac{\min\left\{ 2-d-2\sqrt{1-d},\sqrt{d}-d\right\}}{2\Delta+1}-O\left(\frac{1}{n}\right)\right)m(G)$, that is, this number visibly exceeds its expected value $d\cdot m(G)$ when considering a uniformly random copy of $G$ in $K$. For $d=\frac{1}{2}$, and $\Delta\leq 2$, we present more detailed results.
Additional details
Identifiers
- URL
- https://hal.science/hal-04172966
- URN
- urn:oai:HAL:hal-04172966v1
Origin repository
- Origin repository
- UNICA