A numerical study of the hyperbolic manifolds in a priori unstable systems. A comparison with Melnikov approximations
- Others:
- Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Dipartimento di Matematica Pura e Applicata [Padova] ; Università degli Studi di Padova = University of Padua (Unipd)
Description
Using numerical methods we study the hyperbolic manifolds in a model of a priori unstable dynamical system. We compare the numerically computed manifolds with their analytic expression obtained with the Melnikov approximation. We find that, at small values of the perturbing parameter, the topology of the numerically computed stable and unstable manifolds is the same as in their Melnikov approximation. Increasing the value of the perturbing parameter, we find that the stable and unstable manifolds have a peculiar topological transition. We find that this transition occurs near those values of the perturbing parameter for which the error terms of Melnikov approximations have a sharp increment. The transition value is also correlated with a change in the behaviour of dynamical quantities, such as the largest Lyapunov exponent and the diffusion coefficient.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00552507
- URN
- urn:oai:HAL:hal-00552507v1
- Origin repository
- UNICA