Simulating 3D periodic structures at oblique incidences with discontinuous Galerkin time-domain methods: theoretical and practical considerations
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Description
In this work, we focus on the development of the use of Periodic Boundary Conditions (PBC) with sources at oblique incidence in a Discontinuous Galerkin Time Domain (DGTD) framework. Whereas in the context of the Finite Difference Time Domain (FDTD) methods, an abundant literature can be found, for DGTD, the amount of contributions reporting on such methods is remarkably low. In this paper, we supplement the existing references using the field transform technique with an analysis of the continuous system using the method of characteristics and provide an energy estimate. Furthermore, we also study the discrete stability of the resulting DGTD scheme. Additional details about sources, observables (reflectance, transmittance and diffraction efficiency), and the use of Complex Frequency-Shifted Perfectly-Matched Layers (CFS-PMLs) in this framework are also given. After numerical validations, two realistic test-cases are considered in the context of nanophotonics with the Diogenes DGTD solver (http://diogenes.inria.fr).
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01978598
- URN
- urn:oai:HAL:hal-01978598v1
- Origin repository
- UNICA