Unsupervised Classification of Array Data Based on the L1-Norm
- Creators
- Martín-Clemente, Rubén
- Zarzoso, Vicente
- Others:
- Departamento de Teoría de la Señal y Comunicaciones
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
L1-norm criteria have been the subject a flurry of research in signal processing and machine learning over the last decade, especially due to their ability to exploit the sparsity of latent variables and their robustness in the presence of faulty data. Among such criteria, L1-norm principal component analysis (L1-PCA) has drawn considerable attention, resulting in a variety of optimization algorithms and connections with other data processing techniques such as independent component analysis. The present contribution takes a step forward in the characterization of L1-PCA by exploring its linear discrimination capabilities. A variant of L1-PCA consisting of L1-norm max-imization subject to an L2-norm constraint is put forward for unsupervised classification. The discrimination properties of the proposed L1-PCA variant are demonstrated through a number of computer experiments.
Abstract
Invited
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02003722
- URN
- urn:oai:HAL:hal-02003722v1
- Origin repository
- UNICA