Statistical Learning Optimization for Highly Efficient Metasurface Designs
- Others:
- Modélisation et méthodes numériques pour le calcul d'interactions onde-matière nanostructurée (ATLANTIS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Analysis and Control of Unsteady Models for Engineering Sciences (ACUMES) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
During the last decade, the field of metasurfaces has drawn significant attention due to the unprecedented control over the optical properties of light in a very short propagation distance with high resolution. These devices consist of nanostructures defined within a single layer of metal or dielectric materials. Recently, several optimization methodologies including both local and global search methods have been considered to tune the parameters of these nanostructures according to the desired applications. The former, require fewer iterations, however, they can be stuck in local maxima/minima, the later is more general and converges to the global solution. Nevertheless, most of the global techniques used so far require costly simulations, which make them inapplicable for modelling 3D real-life designs. In this contribution, we present an efficient global optimization method that belongs to the class of Bayesian optimization and is known as Efficient Global Optimization (EGO) to optimize highly efficient metasurface designs. We will discuss both single and multiobjective optimization problems and demonstrate numerically the ability of the EGO in obtaining the global solution using a few numbers of solver calls even in the case of large parameter space with multiple objectives. Various optimized real-life applications will be considered ranging from beam deflectors and achromatic large-scale metalenses.
Abstract
International audience
Additional details
- URL
- https://www.hal.inserm.fr/inserm-03070707
- URN
- urn:oai:HAL:inserm-03070707v1
- Origin repository
- UNICA