Looking Deeper into Tabular LIME
- Creators
- Garreau, Damien
- von Luxburg, Ulrike
- Others:
- Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- University of Tübingen
Description
Interpretability of machine learning algorithms is an urgent need. Numerous methods appeared in recent years, but do their explanations make sense? In this paper, we present a thorough theoretical analysis of one of these methods, LIME, in the case of tabular data. We prove that in the large sample limit, the interpretable coefficients provided by Tabular LIME can be computed in an explicit way as a function of the algorithm parameters and some expectation computations related to the black-box model. When the function to explain has some nice algebraic structure (linear, multiplicative, or sparsely depending on a subset of the coordinates), our analysis provides interesting insights into the explanations provided by LIME. These can be applied to a range of machine learning models including Gaussian kernels or CART random forests. As an example, for linear functions we show that LIME has the desirable property to provide explanations that are proportional to the coefficients of the function to explain and to ignore coordinates that are not used by the function to explain. For partition-based regressors, on the other side, we show that LIME produces undesired artifacts that may provide misleading explanations.
Abstract
63 pages, 16 figures
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02948641
- URN
- urn:oai:HAL:hal-02948641v1
- Origin repository
- UNICA