Transcriptional control of quality differences in the lipid-based cuticle barrier in Drosophila suzukii and Drosophila melanogaster
- Others:
- University of Tübingen
- Tianjin University (TJU)
- Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA) ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- The German Research Foundation (DFG, MO1714/9-1) and a grant to YY by the National Science Foundation of China (NSFC, 31761133021).
Description
Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides than D. melanogaster flies. Thus, both the inward and outward barriers of D. suzukii are less efficient. Consistently, D. suzukii flies have less cuticular hydrocarbons (CHC) that participate as key components of the cuticle barrier. Especially, the relative amounts of branched and desaturated CHCs, known to enhance desiccation resistance, show reduced levels in D. suzukii. Moreover, the expression of snustorr (snu) that encodes an ABC transporter involved in barrier construction and CHC externalization, is strongly suppressed in D. suzukii. Hence, species-specific genetic programs regulate the quality of the lipid-based cuticle barrier in these two Drosophilae. Together, we conclude that the weaker inward and outward barriers of D. suzukii may be partly explained by differences in CHC composition and by a reduced Snu-dependent transport rate of CHCs to the surface. In turn, this suggests that snu is an ecologically adjustable and therefore relevant gene in cuticle barrier efficiency.
Abstract
This article is part of the Research Topic "Genetic and Epigenetic Regulation of Insect Development, Reproduction, and Phenotypic Plasticity".
Abstract
International audience
Additional details
- URL
- https://hal.inrae.fr/hal-02929013
- URN
- urn:oai:HAL:hal-02929013v1
- Origin repository
- UNICA