A Computational Framework For Generating Rotation Invariant Features And Its Application In Diffusion MRI
- Others:
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665 : CoBCoM - Computational Brain Connectivity Mapping).Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscienceat Washington University.
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- European Project: 694665,H2020 ERC,ERC-2015-AdG,CoBCoM(2016)
Description
In this work, we present a novel computational framework for analytically generating a complete set of algebraically independent Rotation Invariant Features (RIF) given the Laplace-series expansion of a spherical function. Our computational framework provides a closed-form solution for these new invariants, which are the natural expansion of the well known spherical mean, power-spectrum and bispectrum invariants. We highlight the maximal number of algebraically independent invariants which can be obtained from a truncated Spherical Harmonic (SH) representation of a spherical function and show that most of these new invariants can be linked to statistical and geometrical measures of spherical functions, such as the mean, the variance and the volume of the spherical signal. Moreover, we demonstrate their application to dMRI signal modeling including the Apparent Diffusion Coefficient (ADC), the diffusion signal and the fiber Orientation Distribution Function (fODF). In addition, using both synthetic and real data, we test the ability of our invariants to estimate brain tissue microstructure in healthy subjects and show that our framework provides more flexibility and open up new opportunities for innovative development in the domain of microstructure recovery from diffusion MRI.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02370077
- URN
- urn:oai:HAL:hal-02370077v1
- Origin repository
- UNICA