A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
- Others:
- Modèles et inférence pour les données de Neuroimagerie (MIND) ; IFR49 - Neurospin - CEA ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris sciences et lettres (PSL)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-17-CONV-0003,Institut DATAIA (I2-DRIVE),Data Science, Artificial Intelligence and Society(2017)
- ANR-18-CE40-0005,GraVa,Méthodes variationnelles pour les signaux sur graphe(2018)
- ANR-20-THIA-0013,UDOPIA,Programme Doctoral en Intelligence Artificielle de l'Université Paris-Saclay(2020)
Description
Bilevel optimization, the problem of minimizing a value function which involves the arg-minimum of another function, appears in many areas of machine learning. In a large scale empirical risk minimization setting where the number of samples is huge, it is crucial to develop stochastic methods, which only use a few samples at a time to progress. However, computing the gradient of the value function involves solving a linear system, which makes it difficult to derive unbiased stochastic estimates. To overcome this problem we introduce a novel framework, in which the solution of the inner problem, the solution of the linear system, and the main variable evolve at the same time. These directions are written as a sum, making it straightforward to derive unbiased estimates. The simplicity of our approach allows us to develop global variance reduction algorithms, where the dynamics of all variables is subject to variance reduction. We demonstrate that SABA, an adaptation of the celebrated SAGA algorithm in our framework, has O(1/T) convergence rate, and that it achieves linear convergence under Polyak-Lojasciewicz assumption. This is the first stochastic algorithm for bilevel optimization that verifies either of these properties. Numerical experiments validate the usefulness of our method.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03562151
- URN
- urn:oai:HAL:hal-03562151v2
- Origin repository
- UNICA