Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell equations
- Others:
- Robust control of infinite dimensional systems and applications (CORIDA) ; Institut Élie Cartan de Nancy (IECN) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Mathématiques et Applications de Metz (LMAM) ; Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Mathematics and Statistics [Univ Strathclyde] ; University of Strathclyde [Glasgow]
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Groupe de Recherche en Electromagnétisme (LAPLACE-GRE) ; LAboratoire PLasma et Conversion d'Energie (LAPLACE) ; Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université Fédérale Toulouse Midi-Pyrénées
Citation
Description
We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic Maxwell equations using a discontinuous Galerkin (DG) method. Due to the multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission conditions in optimized Schwarz methods should be discretized, and the most natural approach does not lead at convergence of the Schwarz method to the mono-domain DG discretization, which implies that for such discretizations, the DG error estimates do not hold when the Schwarz method has converged. We present an alternative discretization of the transmission conditions in the framework of a DG weak formulation, and prove that for this discretization the multidomain and mono-domain solutions for the Maxwell's equations are the same. We illustrate our results with several numerical experiments of propagation problems in homogeneous and heterogeneous media.
Additional details
- URL
- https://hal.science/hal-01062853
- URN
- urn:oai:HAL:hal-01062853v1
- Origin repository
- UNICA