Published February 29, 2012
| Version v1
Conference paper
On the treewidth and related parameters of random geometric graphs
- Creators
- Mitsche, Dieter
- Perarnau, Guillem
- Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Applied Mathematics IV Department ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
Description
We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G(n, r) in [0,\sqrt{n}]^2. More precisely, we show that there exists some c1 > 0, such that for any constant 0 < r < c1, tw(G) = \Theta(log n/log log n), and also, there exists some c2 > c1, such that for any r = r(n) \geq c2, tw(G) = \Theta(r \sqrt{n}). Our proofs show that for the corresponding values of r the same asymptotic bounds also hold for the pathwidth and treedepth of a random geometric graph.
Additional details
- URL
- https://hal.science/hal-00923118
- URN
- urn:oai:HAL:hal-00923118v1
- Origin repository
- UNICA