Location Aware Opportunistic Bandwidth Sharing between Static and Mobile Users with Stochastic Learning in Cellular Networks
- Others:
- Dynamics of Geometric Networks (DYOGENE) ; Département d'informatique - ENS Paris (DI-ENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Network Engineering and Operations (NEO ) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire Informatique d'Avignon (LIA) ; Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- This work was done when Arpan Chattopadhyay was a postdoctoral researcherin Inria/ENS, Paris, France.
Description
We consider location-dependent opportunistic bandwidth sharing between static and mobile downlink users in a cellular network. Each cell has some fixed number of static users. Mobile users enter the cell, move inside the cell for some time and then leave the cell. In order to provide higher data rate to mobile users, we propose to provide higher bandwidth to the mobile users at favourable times and locations, and provide higher bandwidth to the static users in other times. We formulate the problem as a long run average reward Markov decision process (MDP) where the per-step reward is a linear combination of instantaneous data volumes received by static and mobile users, and find the optimal policy. The transition structure of this MDP is not known in general. To alleviate this issue, we propose a learning algorithm based on single timescale stochastic approximation. Also, noting that the unconstrained MDP can be used to solve a constrained problem, we provide a learning algorithm based on multi-timescale stochastic approximation. The results are extended to address the issue of fair bandwidth sharing between the two classes of users. Numerical results demonstrate performance improvement by our scheme, and also the trade-off between performance gain and fairness.
Abstract
16 Pages, 1 Figure, 1 Table
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01401007
- URN
- urn:oai:HAL:hal-01401007v1
- Origin repository
- UNICA