Single electron states in polyethylene
Description
We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.
Abstract
The US National Science Foundation under grant CHE-0911635 and from his Stokes Professorship in Nano Biophysics from Science Foundation Ireland thanks the Irish Centre for High End Computing (ICHEC) for computer resources and Science Foundation Ireland for support from grant 08-IN.1-I1869.
Additional details
- URL
- https://idus.us.es/handle/11441/25610
- URN
- urn:oai:idus.us.es:11441/25610
- Origin repository
- USE