Elimination theory in codimension one and applications
- Creators
- Busé, Laurent
- Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- INRIA
Description
In these notes, we present a general framework to compute the codimension one part of the elimination ideal of a system of homogeneous polynomials. It is based on the computation of the so-called MacRae's invariants that we will obtain by means of determinants of complexes. Our approach mostly uses tools from commutative algebra. We begin with some basics on elimination theory and then introduce the MacRae's invariant and the so-called determinants of complexes. The rest of these notes illustrates our approach through two important examples: the Macaulay's resultant of $n$ homogeneous polynomials in $n$ variables and the computation of an implicit equation of a parameterized hypersurface using syzygies.
Abstract
Notes of lectures given at the CIMPA-UNESCO-IRAN school in Zanjan, Iran, July 9-22 2005
Additional details
- URL
- https://hal.inria.fr/inria-00077120
- URN
- urn:oai:HAL:inria-00077120v3
- Origin repository
- UNICA