Published October 30, 2012
| Version v1
Publication
Curvilinear schemes and maximum rank of forms
- Creators
- Ballico, Edoardo
- Bernardi, Alessandra
- Others:
- Department of mathematics/Dipartimento di Matematica [Univ. Trento] ; Università degli Studi di Trento (UNITN)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.
Additional details
- URL
- https://hal.inria.fr/hal-00747023
- URN
- urn:oai:HAL:hal-00747023v1
- Origin repository
- UNICA