Cooperation of amphiregulin and insulin-like growth factor-1 inhibits Bax- and Bad-mediated apoptosis via a protein kinase C-dependent pathway in non-small cell lung cancer cells.
- Others:
- Groupe de Recherche Sur Le Cancer du Poumon : Bases Moléculaires de la Progression Tumorale, Dépistage et Thérapie Génique ; Institut Albert Bonniot-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Mort cellulaire et cancer ; Université de Bourgogne (UB)-IFR100 - Structure fédérative de recherche Santé-STIC-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Physiopathologie de la survie et de la mort cellulaire et infection virale ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-IFR50-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)
Description
Amphiregulin (AR) and insulin-like growth factor-1 (IGF1) are growth factors known to promote non-small cell lung cancer (NSCLC) survival. We have previously published that 1) AR and IGF1, secreted by H358 NSCLC cells, cooperate to protect those cells and H322 NSCLC cells from serum-starved apoptosis; 2) H358 cells resist Bax-induced apoptosis through an inhibition of Bax conformational change. We show here that the antiapoptotic activity of the AR/IGF1 combination is specifically abolished by the PKC inhibitors calphostin C and staurosporine, but not by the MAPK and phosphatidylinositol 3-kinase inhibitors PD98059 and wortmannin, suggesting the involvement of a PKC-dependent and MAPK- and phosphatidylinositol 3-kinase-independent survival pathway. The PKCdelta inhibitor rottlerin restores apoptosis induced by serum deprivation. In addition, phosphorylation of PKCdelta and PKCzeta/lambda, but not of PKCalpha/beta(II), increases in serum-starved H358 cells and in H322 cells treated with an AR/IGF1 combination and is blocked by calphostin C. The combination of AR and IGF1 increases p90(rsk) and Bad phosphorylation as well as inhibiting the conformational change of Bax by a PKC-dependent mechanism. Finally, PKCdelta, PKCzeta, or p90(rsk) small interfering RNAs block the antiapoptotic activity of AR/IGF1 combination but have no effect on partial apoptosis inhibition observed with each factor used alone. Constitutively active PKC expression inhibits serum deprivation-induced apoptosis, whereas a catalytically inactive form of p90(rsk) restores it. Thus, AR and IGF1 cooperate to prevent apoptosis by activating a specific PKC-p90(rsk)-dependent pathway, which leads to Bad and Bax inactivation. This signaling pathway is different to that used by single factor.
Abstract
International audience
Additional details
- URL
- https://www.hal.inserm.fr/inserm-00340599
- URN
- urn:oai:HAL:inserm-00340599v1
- Origin repository
- UNICA