Published May 2, 2024
| Version v1
Conference paper
MMD-based Variable Importance for Distributional Random Forest
Creators
Contributors
Others:
- Safran Tech
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Médecine de précision par intégration de données et inférence causale (PREMEDICAL) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Desbrest d'Epidémiologie et de Santé Publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
- Institut Desbrest d'Epidémiologie et de Santé Publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
- ANR-16-IDEX-0006,MUSE,MUSE(2016)
Description
Distributional Random Forest (DRF) is a flexible forest-based method to estimate the full conditional distribution of a multivariate output of interest given input variables. In this article, we introduce a variable importance algorithm for DRFs, based on the well-established drop and relearn principle and MMD distance. While traditional importance measures only detect variables with an influence on the output mean, our algorithm detects variables impacting the output distribution more generally. We show that the introduced importance measure is consistent, exhibits high empirical performance on both real and simulated data, and outperforms competitors. In particular, our algorithm is highly efficient to select variables through recursive feature elimination, and can therefore provide small sets of variables to build accurate estimates of condi-tional output distributions.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04251588
- URN
- urn:oai:HAL:hal-04251588v1
Origin repository
- Origin repository
- UNICA