Published March 30, 2024
| Version v1
Publication
Off-the-grid regularisation for Poisson inverse problems
Contributors
Others:
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Dipartimento di Matematica [Genova] ; Università degli studi di Genova = University of Genoa (UniGe)
- Achucarro Basque Center for Neuroscience ; University of the Basque Country = Euskal Herriko Unibertsitatea (UPV / EHU)-Ikerbasque - Basque Foundation for Science
- ANR-22-CE48-0010,TASKABILE,Apprentissage bi-niveau adapté à l'objectif de modéles statistiques flexibles pour l'imagerie et la vision(2022)
- ANR-21-CE48-0008,MICROBLIND,Problèmes inverses aveugles et microscopie optique(2021)
Description
Off-the-grid regularisation has been extensively employed over the last decade in the context of ill-posed inverse problems formulated in the continuous setting of the space of Radon measures $\Mx$. These approaches enjoy convexity and counteract the discretisation biases as well the numerical instabilities typical of their discrete counterparts. In the framework of sparse reconstruction of discrete point measures (sum of weighted Diracs), a Total Variation regularisation norm in $\Mx$ is typically combined with an $L^2$ data term modelling additive Gaussian noise. To asses the framework of off-the-grid regularisation in the presence of signal-dependent Poisson noise, we consider in this work a variational model coupling the Total Variation regularisation with a Kullback-Leibler data term under a non-negativity constraint. Analytically, we study the optimality conditions of the composite functional and analyse its dual problem. Then, we consider an homotopy strategy to select an optimal regularisation parameter and use it within a Sliding Frank-Wolfe algorithm. Several numerical experiments on both 1D/2D simulated and real 3D fluorescent microscopy data are reported.
Abstract
[The codes used for implementing the models and algorithms described in this work are available]Additional details
Identifiers
- URL
- https://hal.science/hal-04527398
- URN
- urn:oai:HAL:hal-04527398v1
Origin repository
- Origin repository
- UNICA