Published March 2012
| Version v1
Journal article
On the cut-off phenomenon for the transitivity of randomly generated subgroups
Creators
Contributors
Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Mathématiques de Toulouse UMR5219 (IMT) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Description
Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generated by the $K$ positions of the chains. In the uniform transposition model, we prove that there is a cut-off phenomenon at time $N\ln(N)/(2K)$ for the non-existence of fixed point of $G_n$ and for the transitivity of $G_n$, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of a fixed point of $G_n$ appears at time of order $N^{1+\frac 2K}$ (at least for $K\geq3$), but there is no cut-off phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed point at a time proportional to $N$ by allowing the number $K$ to be proportional to $\ln(N)$. The main tools of the proofs are spectral analysis and coupling techniques.
Abstract
38 pagesAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00384188
- URN
- urn:oai:HAL:hal-00384188v2
Origin repository
- Origin repository
- UNICA