Published June 2018 | Version v1
Conference paper

The density of expected persistence diagrams and its kernel based estimation

Description

Persistence diagrams play a fundamental role in Topological Data Analysis where they are used as topological descriptors of filtrations built on top of data. They consist in discrete multisets of points in the plane R 2 that can equivalently be seen as discrete measures in R 2. When the data come as a random point cloud, these discrete measures become random measures whose expectation is studied in this paper. First, we show that for a wide class of filtrations, including the Čech and Rips-Vietoris filtrations, the expected persistence diagram, that is a deterministic measure on R 2 , has a density with respect to the Lebesgue measure. Second, building on the previous result we show that the persistence surface recently introduced in [Adams & al., Persistenceimages: a stable vector representation of persistent homology] can be seen as a kernel estimator of this density. We propose a cross-validation scheme for selecting an optimal bandwidth, which is proven to be a consistent procedure to estimate the density.

Abstract

Extended version of the SoCG proceedings, submitted to a journal

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023