Published 2016
| Version v1
Journal article
Plant identification: Man vs. Machine
Contributors
Others:
- Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])
- Scientific Data Management (ZENITH) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Tele Botanica
- Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Agropolis Fondation
Description
This paper reports a large-scale experiment aimed at evaluating how state-of-art computer vision systems perform in identifying plants compared to human expertise. A subset of the evaluation dataset used within LifeCLEF 2014 plant identification challenge was therefore shared with volunteers of diverse expertise, ranging from the leading experts of the targeted flora to inexperienced test subjects. In total, 16 human runs were collected and evaluated comparatively to the 27 machine-based runs of LifeCLEF challenge. One of the main outcomes of the experiment is that machines are still far from outperforming the best expert botanists at the image-based plant identification competition. On the other side, the best machine runs are competing withexperienced botanists and clearly outperform beginners and inexperienced testsubjects. This shows that the performances of automated plant identification systems are very promising and may open the door to a new generation of ecological surveillance systems.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01182778
- URN
- urn:oai:HAL:hal-01182778v1
Origin repository
- Origin repository
- UNICA