Published December 1, 2011
| Version v1
Journal article
Geometric Inference for Probability Measures
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Modélisation Géométrique & Multirésolution pour l'Image (MGMI) ; Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)
Description
Data often comes in the form of a point cloud sampled from an unknown compact subset of Euclidean space. The general goal of geometric inference is then to recover geometric and topological features (e.g., Betti numbers, normals) of this subset from the approximating point cloud data. It appears that the study of distance functions allows one to address many of these questions successfully. However, one of the main limitations of this framework is that it does not cope well with outliers or with background noise. In this paper, we show how to extend the framework of distance functions to overcome this problem. Replacing compact subsets by measures, we introduce a notion of distance function to a probability distribution in ℝ d . These functions share many properties with classical distance functions, which make them suitable for inference purposes. In particular, by considering appropriate level sets of these distance functions, we show that it is possible to reconstruct offsets of sampled shapes with topological guarantees even in the presence of outliers. Moreover, in settings where empirical measures are considered, these functions can be easily evaluated, making them of particular practical interest.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00772444
- URN
- urn:oai:HAL:hal-00772444v1
Origin repository
- Origin repository
- UNICA