Checking Constraint Satisfaction
- Creators
- Jung, Victor
- Régin, Jean-Charles
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
We address the problem of verifying a constraint by a set of solutions S. This problem is present in almost all systems aiming at learning or acquiring constraints or constraint parameters. We propose an original approach based on MDDs. Indeed, the set of solutions can be represented by the MDD denoted by M DDS. Checking whether S satisfies a given constraint C can be done using M DD(C), the MDD that contains the set of solutions of C, and by searching if the intersection between M DD(S) and M DD(C) is equal to M DD(S). This step is equivalent to searching whether M DD(S) is included in M DD(C). Thus, we give an inclusion algorithm to speed up these calculations. Then, we generalize this approach for the computation of global constraint parameters satisfying C. Next, we introduce the notion of properties on the MDD nodes and define a new algorithm allowing to compute in only one step the set of parameters we are looking for. Finally, we present experimental results showing the interest of our approach.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03356093
- URN
- urn:oai:HAL:hal-03356093v1
- Origin repository
- UNICA