Published 2010 | Version v1
Conference paper

APIC: Absolute Position Interfero Coronagraph for direct exoplanet detection: first laboratory results

Citation

An error occurred while generating the citation.

Description

For the detection and direct imaging of exoplanets, when the intensity ratio between a star and its orbiting planet can largely exceed 106, coronagraphic methods are mandatory. In 1996, a concept of achromatic interferocoronagraph (AIC) was presented by J. Gay and Y. Rabbia for the detection of very faint stellar companions, such as exoplanets. In an earlier paper, we presented a modified version of the AIC permitting to determine the relative position of these faint companions with respect to the parent star, a problem unsolved in the original design of the AIC. Our modification lied in the use of cylindrical lens doublets as field rotator. By placing two of them in one arm of the interferometric set-up of AIC, we destroyed the axis of symmetry induced by the AIC's original design. Our theoretical study, along with the numerical computations, presented then, and the preliminary test bench results aiming at validating the cylindrical lens doublet field rotation capability, presented in this paper, show that the axis of symmetry is destroyed when one of the cylindrical doublets is rotated around the optic axis.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023