Published February 7, 2024
| Version v1
Publication
Extremal determinants: the periodic one-dimensional essentially bounded case *
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire des signaux et systèmes (L2S) ; CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- LaSIGE [Lisboa] ; Universidade de Lisboa = University of Lisbon (ULISBOA)-Faculdade de Ciências
- Instituto Superior Técnico ; Technical University of Lisbon
- Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX) ; Inria Nancy - Grand Est ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut Universitaire de France (IUF) ; Ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
- Institut de Recherche Mathématique Avancée (IRMA) ; Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- This project is partially supported by the FMJH Program PGMO and EDF-Thales-Orange (extdet PGMO grant), by the iCODE Institute.
- ANR-11-LABX-0056,LMH,LabEx Mathématique Hadamard(2011)
- ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011)
Description
The functional determinant of elliptic differential operators on the circle was introduced in [3]. In the present paper, optimisation of this determinant over essentially bounded functions is studied. In the one dimensional case, existence and uniqueness of maximisers and minimisers is proved.
Additional details
Identifiers
- URL
- https://hal.science/hal-04444309
- URN
- urn:oai:HAL:hal-04444309v2
Origin repository
- Origin repository
- UNICA