Affine Combination of Diffusion Strategies over Networks
- Others:
- Northwestern Polytechnical University [Xi'an] (NPU)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019)
Description
Diffusion adaptation is a powerful strategy for distributed estimation and learning over networks. Motivated by the concept of combining adaptive filters, this work proposes a combination framework that aggregates the operation of multiple diffusion strategies for enhanced performance. By assigning a combination coefficient to each node, and using an adaptation mechanism to minimize the network error, we obtain a combined diffusion strategy that benefits from the best characteristics of all component strategies simultaneously in terms of excess-mean-square error (EMSE). Analyses of the universality are provided to show the superior performance of affine combination scheme and to characterize its behavior in the mean and mean-square sense. Simulation results are presented to demonstrate the effectiveness of the proposed strategies, as well as the accuracy of theoretical findings.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03347190
- URN
- urn:oai:HAL:hal-03347190v1
- Origin repository
- UNICA