Reinforcement learning for semi-autonomous approximate quantum eigensolver
- Others:
- Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear
- Comisión Nacional de Investigación Científica y Tecnológica (CONICYT). Chile
- European Union (UE)
- Gobierno Vasco
- Ministerio de Ciencia e Innovación (MICIN). España
- Agencia Estatal de Investigación. España
- European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Description
The characterization of an operator by its eigenvectors and eigenvalues allows us to know its action over any quantum state. Here, we propose a protocol to obtain an approximation of the eigenvectors of an arbitrary Hermitian quantum operator. This protocol is based on measurement and feedback processes, which characterize a reinforcement learning protocol. Our proposal is composed of two systems, a black box named environment and a quantum state named agent. The role of the environment is to change any quantum state by a unitary matrix UˆE = e −iτOˆE where OˆE is a Hermitian operator, and τ is a real parameter. The agent is a quantum state which adapts to some eigenvector of OˆE by repeated interactions with the environment, feedback process, and semi-random rotations. With this proposal, we can obtain an approximation of the eigenvectors of a random qubit operator with average fidelity over 90% in less than 10 iterations, and surpass 98% in less than 300 iterations. Moreover, for the two-qubit cases, the four eigenvectors are obtained with fidelities above 89% in 8000 iterations for a random operator, and fidelities of 99% for an operator with the Bell states as eigenvectors. This protocol can be useful to implement semi-autonomous quantum devices which should be capable of extracting information and deciding with minimal resources and without human intervention.
Abstract
Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia (CONICYT)-FB0807
Abstract
EU FET-QMiCS (820505) y OpenSuperQ (820363)
Abstract
Gobierno Vasco-IT986-16
Abstract
Ministerio de Ciencia e Innovación (MICIN), Agencia Estatal de Investigación de España (AEI) y Fondo Europeo de Desarrollo Regional (FEDER)-PGC2018-095113-B-I00
Additional details
- URL
- https://idus.us.es/handle//11441/108122
- URN
- urn:oai:idus.us.es:11441/108122
- Origin repository
- USE