Published February 13, 2023 | Version v1
Publication

Thermal resilience of citizens: comparison between thermal sensation and objective estimation in outdoor spaces: a case study in Seville, Spain

Description

Sanitary issues, combined with the effects of climate change, emphasize the comfort of outdoor spaces in cities. Numerous comfort models exist and can predict thermal sensation. However, these comfort indices need to be validated in hot zones and quantify the neutral range considering people's thermal resilience. The present study investigates the outdoor thermal comfort of people who live in hot areas and are accustomed to this and quantifies this effect. For that, predictions provided by the COMFA thermal comfort model were compared with the occupants' perceptions given in the field campaigns' questionnaires. The field campaigns were associated with on-site monitoring of local climate variables. It was observed that during the survey period, the entire space was predicted to be uncomfortable by the COMFA model. On the contrary, the results of the questionnaires showed that the most frequently encountered thermal sensations were distributed between the comfort zone and the hot zone. The proposed methodology has been designed to be used by other researchers, and it is adaptable to other outdoor thermal comforts such as PET or ITS. The comparison between the model's predictions and the users' responses to space highlighted the tendency of the COMFA to overestimate the thermal sensations. This work's results allow extending the neutral comfort band from 50 W/m2 (value of literature) to 80 W/m2. So, the paper quantifies that the effect of the thermal resilience of the people increases the thermal band of comfort by around 60%. These results will allow an accurate assessment of the effectiveness of future mitigation solutions implemented to improve outdoor thermal comfort in other world areas. It is due to the propose of a higher neutrality range researchers or designers could achieve outdoor thermal comfort in effective and reliable ways, even in hot climates.

Abstract

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Additional details

Created:
March 1, 2023
Modified:
November 30, 2023