Estimating composite functions by model selection
- Creators
- Baraud, Yannick
- Birgé, Lucien
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Probabilités et Modèles Aléatoires (LPMA) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Description
We consider the problem of estimating a function s on [−1,1]k for large values of k by looking for some best approximation of s by composite functions of the form g ◦ u. Our solution is based on model selection and leads to a very general approach to solve this problem with respect to many different types of functions g, u and statistical frameworks. In particular, we handle the problems of approximating s by additive functions, single and multiple index models, neural networks, mixtures of Gaussian densities (when s is a density) among other examples. We also investigate the situation where s = g ◦ u for functions g and u belonging to possibly anisotropic smoothness classes. In this case, our approach leads to a completely adaptive estimator with respect to the regularity of s.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00756061
- URN
- urn:oai:HAL:hal-00756061v1
- Origin repository
- UNICA