Published 2021 | Version v1
Publication

Pathophysiological mechanisms in neurodevelopmental disorders caused by rac GTPases dysregulation: What's behind neuro-RACopathies

Description

Rho family guanosine triphosphatases (GTPases) regulate cellular signaling and cytoskele-tal dynamics, playing a pivotal role in cell adhesion, migration, and cell cycle progression. The Rac subfamily of Rho GTPases consists of three highly homologous proteins, Rac 1–3. The proper function of Rac1 and Rac3, and their correct interaction with guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs) are crucial for neural development. Pathogenic variants affecting these delicate biological processes are implicated in different medical conditions in humans, primarily neurodevelopmental disorders (NDDs). In addition to a direct deleterious effect produced by genetic variants in the RAC genes, a dysregulated GTPase activity resulting from an abnormal function of GEFs and GAPs has been involved in the pathogenesis of distinctive emerging conditions. In this study, we reviewed the current pertinent literature on Rac-related disorders with a primary neurological involvement, providing an overview of the current knowledge on the pathophysiological mechanisms involved in the neuro-RACopathies.

Additional details

Identifiers

URL
https://hdl.handle.net/11567/1119282
URN
urn:oai:iris.unige.it:11567/1119282

Origin repository

Origin repository
UNIGE