A Neural Field Model for Motion Estimation
- Others:
- NEUROMATHCOMP ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-INRIA Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut de neurosciences cognitives de la méditerranée - UMR 6193 (INCM) ; Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
- Springer
Description
We propose a bio-inspired approach to motion estimation based on recent neuroscience findings concerning the motion pathway. Our goal is to identify the key biological features in order to reach a good compromise between bio-inspiration and computational efficiency. Here we choose the neural field formalism which provides a sound mathematical framework to describe the model at a macroscopic scale. Within this framework we define the cortical activity as coupled integro-differential equations and we prove the well-posedness of the model. We show how our model performs on some classical computer vision videos, and we compare its behaviour against the visual system on a simple classical video used in psychophysics. As a whole, this article contributes to bring new ideas from computational neuroscience in the domain of computer vision, concerning modelling principles and mathematical formalism.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00845749
- URN
- urn:oai:HAL:hal-00845749v1
- Origin repository
- UNICA