Published December 2004 | Version v1
Report

On the Complexity of Bandwidth Allocation in Radio Networks with Steady Traffic Demands

Others:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
INRIA

Description

In this paper we define and study a call scheduling problem that is motivated by radio networks. In such networks the physical space is a common resource that nodes have to share, since concurrent transmissions cannot be interfering. We study how one can satisfy steady bandwidth demands according to this constraint. This leads to the definition of a call scheduling problem. We show that it can be relaxed into a simpler problem: The call weighting problem, which is almost a usual multi-commodity flow problem, but the capacity constraints are replaced by the much more complex notion of non interference. Not surprisingly this notion involve independent sets, and we prove that the complexity of the call weighting problem is strongly related to the one of the independent set problem and its variants (max-weight, coloring, fractional coloring). The hardness of approximation follows when the interferences are described by an arbitrary graph. We refine our study by considering some particular cases for which efficient polynomial algorithm can be provided: the Gathering in which all the demand are directed toward the same sink, and specific interference relations: namely those induced by the dimension $1$ and $2$ Euclidean space, those cases are likely to be the practical ones.

Additional details

Created:
December 3, 2022
Modified:
November 28, 2023